Crowdsourcing Cybersecurity: Cyber Attack Detection using Social Media

Nov 6, 2017·
Rupinder P. Khandpur
Taoran Ji
Taoran Ji
,
Steve Jan
,
Gang Wang
,
Chang-Tien Lu
,
Naren Ramakrishnan
· 0 min read
Abstract
Social media is often viewed as a sensor into various societal events such as disease outbreaks, protests, and elections. We describe the use of social media as a crowdsourced sensor to gain insight into ongoing cyber-attacks. Our approach detects a broad range of cyber-attacks (e.g., distributed denial of service (DDoS) attacks, data breaches, and account hijacking) in a weakly supervised manner using just a small set of seed event triggers and requires no training or labeled samples. A new query expansion strategy based on convolution kernels and dependency parses helps model semantic structure and aids in identifying key event characteristics. Through a large-scale analysis over Twitter, we demonstrate that our approach consistently identifies and encodes events, outperforming existing methods.
Type
Publication
In The 2017 ACM on Conference on Information and Knowledge Management